Generalized Method of Moments and Empirical Likelihood
نویسنده
چکیده
Generalized method of moments (GMM) estimation has become an important unifying framework for inference in econometrics in the last 20 years. It can be thought of as encompassing almost all of the common estimation methods, such as maximum likelihood, ordinary least squares, instrumental variables, and two-stage least squares, and nowadays is an important part of all advanced econometrics textbooks. The GMM approach links nicely to economic theory where orthogonality conditions that can serve as such moment functions often arise from optimizing behavior of agents. Much work has been done on these methods since the seminal article by Hansen, and much remains in progress. This article discusses some of the developments since Hansen’s original work. In particular, it focuses on some of the recent work on empirical likelihood–type estimators, which circumvent the need for a rst step in which the optimal weight matrix is estimated and have attractive information theoretic interpretations.
منابع مشابه
Computing Generalized Empirical Likelihood and Generalized Method of Moments with R
This paper shows how to estimate models by the generalized method of moments and the generalized empirical likelihood using the R package gmm. A brief discussion is offered on the theoretical aspects of both methods and the functionality of the package is presented through several examples in economics and finance.
متن کاملComputing Generalized Method of Moments and Generalized Empirical Likelihood with R
This paper shows how to estimate models by the generalized method of moments and the generalized empirical likelihood using the R package gmm. A brief discussion is offered on the theoretical aspects of both methods and the functionality of the package is presented through several examples in economics and finance. It is a modified version of Chaussé (2010) published in the Journal of Statistic...
متن کاملEffects of Trade and Financial Liberalization on Financial Development (Case Study: MENA Countries)
Financial sector is one of the most influential sectors in economic activities. Empirical and theoretical studies conducted in recent years have also confirmed the significant role of financial institutions in economic growth. Additionally, trade and financial liberalization policies have been particular concerned with strategic policies in developed and developing countries. According to dynam...
متن کاملEstimation of Parameters for an Extended Generalized Half Logistic Distribution Based on Complete and Censored Data
This paper considers an Extended Generalized Half Logistic distribution. We derive some properties of this distribution and then we discuss estimation of the distribution parameters by the methods of moments, maximum likelihood and the new method of minimum spacing distance estimator based on complete data. Also, maximum likelihood equations for estimating the parameters based on Type-I and Typ...
متن کاملComparison of Artificial Neural Network, Decision Tree and Bayesian Network Models in Regional Flood Frequency Analysis using L-moments and Maximum Likelihood Methods in Karkheh and Karun Watersheds
Proper flood discharge forecasting is significant for the design of hydraulic structures, reducing the risk of failure, and minimizing downstream environmental damage. The objective of this study was to investigate the application of machine learning methods in Regional Flood Frequency Analysis (RFFA). To achieve this goal, 18 physiographic, climatic, lithological, and land use parameters were ...
متن کاملModerate deviations of generalized method of moments and empirical likelihood estimators
This paper studies moderate deviation behaviors of the generalized method of moments and generalized empirical likelihood estimators for generalized estimating equations, where the number of equations can be larger than the number of unknown parameters. We consider two cases for the data generating probability measure: themodel assumption and local contaminations or deviations from the model as...
متن کامل